Скільки в одному Мгн ГнСкільки в одному Мгн Гн

0 Comment

Подробнее об индуктивности

Если бы кому-нибудь пришла в голову идея провести опрос населения Земли на тему «Что вы знаете об индуктивности?», то подавляющее число опрашиваемых просто пожало бы плечами. А ведь это второй по многочисленности вслед за транзисторами технический элемент, на котором зиждется современная цивилизация! Любители детективов, припомнив, что в своей юности зачитывались захватывающими рассказами сэра Артура Конан Дойла о приключениях знаменитого сыщика Шерлока Холмса, с разной степенью уверенности пробормочут что-то о методе, которым вышеозначенный сыщик пользовался. При этом подразумевая метод дедукции, который, наравне с методом индукции, является основным методом познания в западной философии Нового времени.

При методе индукции происходит исследование отдельных фактов, принципов и формирование общих теоретических концепций на основе полученных результатов (от частного к общему). Метод дедукции, наоборот, предполагает исследование от общих принципов, законов, когда положения теории распределяются на отдельные явления.

Следует отметить, что индукция, в смысле метода, не имеет сколько-нибудь прямого отношения к индуктивности, просто они имеют общий латинский корень inductio — наведение, побуждение — и обозначают совершенно разные понятия.

Лишь малая часть опрашиваемых из числа носителей точных наук — профессиональных физиков, инженеров-электротехников, радиоинженеров и студентов этих направлений — смогут дать внятный ответ на этот вопрос, а некоторые из них готовы прочитать с ходу целую лекцию на эту тему.

В физике индуктивность, или коэффициент самоиндукции, определяется как коэффициент пропорциональности L между магнитным потоком Ф вокруг проводника с током и порождающим его током I или — в более строгой формулировке — это коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током:

Для понимания физической роли катушки индуктивности в электрических цепях можно использовать аналогию формулы энергии, запасаемой в ней при протекании тока I, с формулой механической кинетической энергии тела.

При заданной силе тока I индуктивность L определяет энергию магнитного поля W, создаваемого этим током I:

WI = 1 /2 · L · I 2

Аналогично, механическая кинетическая энергия тела определяется массой тела m и его скоростью V:

Wk = 1 /2 · m · V 2

То есть индуктивность, подобно массе, не позволяет энергии магнитного поля мгновенно увеличиться, равно как и масса не позволяет проделать такое с кинетической энергией тела.

Проведём исследование поведения тока в индуктивности:

Рис. 3. Осциллограмма тока через индуктивность. Желтая осциллограмма — выход сигнал-генератора, голубая — сигнал на резисторе.

Из-за инерционности индуктивности происходит затягивание фронтов входного напряжения. Такая цепь в автоматике и радиотехнике называется интегрирующей, и применяется для выполнения математической операции интегрирования.

Проведём исследование напряжения на катушке индуктивности:

В моменты подачи и снятия напряжения из-за присущей катушкам индуктивности ЭДС самоиндукции, возникают выбросы напряжения. Такая цепь в автоматике и радиотехнике называется дифференцирующей, и применяется в автоматике для корректировки процессов в управляемом объекте, носящих быстрый характер.

Рис. 5. По большому счёту, во всех генераторах электрического тока любого типа, равно как и в электродвигателях, их обмотки представляют собой катушки индуктивности.

Единицы измерения

В системе единиц СИ индуктивность измеряется в генри, сокращённо Гн. Контур с током обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт.

В вариантах системы СГС — системе СГСМ и в гауссовой системе индуктивность измеряется в сантиметрах (1 Гн = 10⁹ см; 1 см = 1 нГн); для сантиметров в качестве единиц индуктивности применяется также название абгенри. В системе СГСЭ единицу измерения индуктивности либо оставляют безымянной, либо иногда называют статгенри (1 статгенри ≈ 8,987552•10⁻¹¹ генри, коэффициент перевода численно равен 10⁻⁹ от квадрата скорости света, выраженной в см/с).

Историческая справка

Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца (Heinrich Friedrich Emil Lenz), который известен своим вкладом в изучение электромагнетизма, и который вывел правило Ленца о свойствах индукционного тока. Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry), который открыл самоиндукцию. Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года.

В числе учёных, принявших участие в исследованиях свойств индуктивности и разработке различных её применений, необходимо упомянуть сэра Генри Кавендиша, который проводил эксперименты с электричеством; Майкла Фарадея, который открыл электромагнитную индукцию; Николу Тесла, который известен своей работой над системами передачи электричества; Андре-Мари Ампера, которого считают первооткрывателем теории об электромагнетизме; Густава Роберта Кирхгофа, который исследовал электрические цепи; Джеймса Кларка Максвелла, который исследовал электромагнитные поля и частные их примеры: электричество, магнетизм и оптику; Генри Рудольфа Герца, который доказал, что электромагнитные волны действительно существуют; Альберта Абрахама Майкельсона и Роберта Эндрюса Милликена. Конечно, все эти ученые исследовали и другие проблемы, о которых здесь не упоминается.

Катушка индуктивности

По определению, катушка индуктивности — это винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока, наблюдается его значительная инерционность, которую можно наблюдать в описанном выше эксперименте. В высокочастотной технике катушка индуктивности может состоять из одного витка или его части, в предельном случае на сверхвысоких частотах для создания индуктивности используется отрезок проводника, который обладает так называемой распределённой индуктивностью (полосковые линии).

Применение в технике

Катушки индуктивности применяются:

  • Для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных (колебательный контур) и частотно-избирательных цепях; создания магнитных полей, датчиков перемещений, в считывающих устройствах кредитных карт, а также в самих бесконтактных кредитных картах.
  • Катушки индуктивности (совместно с конденсаторами и резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и других. Такие катушки, соответственно, так и называют: контурная катушка, катушка фильтра и так далее.
  • Две индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме.
  • При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника катушку индуктивности называют дросселем.
  • В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) катушку индуктивности называют реактором.
  • Ограничители тока сварочных аппаратов выполняются в виде катушки индуктивности, ограничивая ток сварочной дуги и делая её более стабильной, тем самым позволяя получить более ровный и прочный сварочный шов.
  • Катушки индуктивности используются также в качестве электромагнитов — исполнительных механизмов. Цилиндрическую катушку индуктивности, длина которой намного превышает диаметр, называют соленоидом. Кроме того, зачастую соленоидом называют устройство, выполняющее механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника.
  • В электромагнитных реле катушки индуктивности называют обмоткой реле.
  • Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева и кухонных индукционных печей.

По большому счёту, во всех генераторах электрического тока любого типа, равно как и в электродвигателях, их обмотки представляют собой катушки индуктивности. Следуя традиции древних изображения плоской Земли, стоящей на трёх слонах или китах, сегодня мы могли бы с большим основанием утверждать, что жизнь на Земле покоится на катушке индуктивности.

Ведь даже магнитное поле Земли, защищающее все земные организмы от корпускулярного космического и солнечного излучений, согласно основной гипотезе о его происхождении, связано с протеканием огромных токов в жидком металлическом ядре Земли. По сути дела, это ядро представляет собой катушку индуктивности планетарного масштаба. Подсчитано, что зона, в которой действует механизм «магнитного динамо», находится на расстоянии 0,25—0,3 радиуса Земли.

Опыты

В заключение хотелось бы рассказать о некоторых любопытных свойствах катушек индуктивности, которые вы могли бы сами понаблюдать, имея под рукой простейшие материалы и доступные приборы. Для проведения опытов нам потребуется отрезки изолированного медного провода, ферритовый стержень и любой современный мультиметр с функцией измерения индуктивности. Вспомним, что любой проводник с током создаёт вокруг себя магнитное поле такого вида, показанное на рисунке 7.

Намотаем на ферритовый стержень четыре десятка витков провода с небольшим шагом (расстоянием между витками). Это будет катушка №1. Затем намотаем такое же количество витков с таким же шагом, но с обратным направлением намотки. Это будет катушка №2. И затем намотаем 20 витков в произвольном направлении вплотную. Это будет катушка №3. Затем аккуратно снимем их с ферритового стержня. Магнитное поле таких катушек индуктивности выглядит примерно так, кака показано на рис. 8.

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. На рисунке 8 показана катушка с немагнитным сердечником, роль немагнитного сердечника исполняет воздух. На рис. 9 показаны примеры катушек индуктивности с магнитным сердечником, который может быть замкнутым или разомкнутым.

В основном используют сердечники из феррита и пластин из электротехнической стали. Сердечники повышают индуктивность катушек в разы. В отличие от сердечников в форме цилиндра, сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, так как магнитный поток в них замкнут.

Подключим концы мультиметра, включенного в режим измерения индуктивности, к концам катушки №1. Индуктивность такой катушки чрезвычайно мала, порядка нескольких долей микрогенри, поэтому прибор ничего не показывает (рис. 10). Начнём вводить в катушку ферритовый стержень (рис. 11). Прибор показывает порядка десятка микрогенри, причем при продвижении катушки к центру стержня её индуктивность возрастает примерно в три раза (рис. 12).

По мере продвижения катушки к другому краю стержня, значение индуктивности катушки опять падает. Вывод: индуктивность катушек может регулироваться путем перемещения в них сердечника, и максимальное её значение достигается при расположении катушки на ферритовом стержне (или, наоборот, стержня в катушке) в центре. Вот мы и получили настоящий, пусть и несколько неуклюжий, вариометр. Проделав вышеописанный опыт с катушкой №2, мы получим аналогичные результаты, то есть направление намотки на индуктивность не влияет.

Уложим витки катушки №1 или №2 на ферритовом стержне поплотнее, без зазоров между витками, и снова измерим индуктивность. Она увеличилась (рис. 13).

А при растягивании катушки по стержню её индуктивность уменьшается (рис. 14). Вывод: изменяя расстояние между витками можно подстраивать индуктивность, а для максимальной индуктивности наматывать катушку надо «виток к витку». Приёмом подстройки индуктивности путём растягивания или сжатия витков частенько пользуются радиотехники, настраивая свою приёмопередающую аппаратуру на нужную частоту.

Установим на ферритовый стержень катушку №3 и измерим её индуктивность (рис. 15). Число витков уменьшилось в два раза, а индуктивность уменьшилась в четыре раза. Вывод: чем меньше количество витков — тем меньше индуктивность, и нет линейной зависимости между индуктивностью и числом витков.

Фізика 11 клас

Явище електромагнітної індукції спостерігається в усіх випадках, коли змінюється магнітний потік через контур. Проте провідник зі струмом перебуває у власному магнітному полі, і якщо це поле змінюється, то в провіднику має збуджуватися ЕРС індукції. Власне магнітне поле такого провідника залежить від сили струму в ньому, тому в разі зміни сили струму в колі в провіднику збуджується ЕРС.

Виникнення ЕРС у провіднику під час зміни сили струму в ньому самому називається самоіндукцією.

Розглянемо коло (мал. 75), яке складається з батареї ЕРС, реостата R, котушки індуктивності L, гальванометра Г і ключа К.

Якщо коло замкнене, то по гальванометру Г і котушці індуктивності L проходить електричний струм. У момент розмикання кола стрілка гальванометра різко відхиляється у протилежний бік. Причина цього в тому, що при розмиканні кола магнітний потік у котушці зменшується, створюючи в ній ЕРС самоіндукції. Струм самоіндукції Iсі за правилом Ленца перешкоджає спаданню магнітнoго потоку, тобто він напрямлений у котушці так само, як і спадний струм I2. Цей струм повністю проходить через гальванометр, але за напрямом, протилежним напряму I1. Явище виникнення індукованого струму в колі внаслідок зміни струму в ньому називають

Самоіндукція — це окремий випадок явищ електромагнітної індукції.

Графік зміни сили струму в колі в момент розмикання наведено на мал. 76. Струм поступово зменшується від значення I, яке було перед розмиканням, до нуля, нагріваючи при цьому провідники. Якщо б обмотка котушки була виготовлена з надпровідного матеріалу і закорочена таким самим провідником, то струм у колі існував би нескінченно довго.

Оскільки самоіндукція — окремий випадок явища електромагнітної індукції, закон Фарадея можна застосовувати і для визначення ЕРС самоіндукції. Пригадаємо, що магнітний потік через площу, обмежену контуром струму, пропорційний силі струму. Дійсно, Ф = BS, а магнітна індукція поля, створюваного струмом, пропорційна в усіх випадках силі струму, тобто В-1. Отже, можна твердити, що

де L — коефіцієнт пропорційності між силою струму в контурі і створюваним нею потоком магнітної індукції через цей контур.

Коефіцієнт L називається індуктивністю провідника, або його коефіцієнтом

Індуктивність провідника в даному середовищі визначається його розмірами і формою. Індуктивність прямолінійного провідника незначна, проте вона зростає, якщо з нього зробити виток. Індуктивність котушки зростає пропорційно кількості її витків.

Запишемо формулу для обчислення ЕРС самоіндукції:

Якщо форма контуру не змінюється, то коефіцієнт самоіндукції є сталим, тоді

Таким чином, ЕРС самоіндукції в колі пропорційна швидкості зміни сили струму в цьому колі.

Якщо то тобто індуктивність — це фізична величина, яка

визначається ЕРС самоіндукції, що виникає в контурі у разі зміни сили струму на 1 А за 1 с.

За одиницю індуктивності в СІ беруть один генрі (1 Гн). З формули видно, що 1 генрі — це індуктивність провідника, в якому при зміні сили струму на 1 А за 1 с виникає ЕРС самоіндукції 1 В; Гн = 1 В · 1 с/1 А.

ЕРС самоіндукції, яка виникає під час замикання і розмикання кола, в деяких випадках може бути досить значною. Чим більша індуктивність кола, тим більша ЕРС і сила струму самоіндукції. Ось чому в разі вимикання рубильників, які розмикають електричні кола з потужними електромагнітами, електродвигунами, трансформаторами та іншими пристроями з великою індуктивністю, між їх контактами пролітає електрична іскра, яка іноді може перейти в дуговий розряд і зіпсувати рубильник. Причиною цього є виникнення в колі настільки великої ЕРС самоіндукції, що між контактами рубильника пробивається повітряний проміжок. Для розмикання таких кіл користуються масляними вимикачами і вживають інші застережні заходи.

Магнітне поле нерозривно зв’язане з електричним струмом: воно виникає, змінюється і зникає зі зміною сили струму. Отже, під час замикання кола частина енергії джерела струму завжди витрачається на створення магнітного поля. Тому воно повинно мати енергію, що дорівнює роботі, витраченій струмом на його створення. Саме енергією магнітного поля пояснюється явище електромагнітної індукції, зокрема самоіндукції. У разі замикання кола з джерелом постійної ЕРС сила струму не відразу досягає максимального значення (яке визначається законом Ома), а певний час зростає, оскільки частина енергії джерела витрачається в цей час на створення магнітного поля. Досягнувши максимального значення, сила струму в колі вже не змінюється. При цьому постійним стає і магнітне поле струму, його енергія теж не буде змінюватися. Джерело струму витрачає енергію лише на підтримання постійної сили струму, і ця частина енергії перетворюється у внутрішню енергію провідників, тобто витрачається на їх нагрівання. Під час розмикання кола магнітне поле струму зникає, однак згідно із законом збереження енергії його енергія перетворюється в енергію струму самоіндукції, який підсилює струм, що вимикають.

Таким чином, явище електромагнітної індукції ґрунтується на взаємних перетвореннях енергій електричного струму і магнітного поля.

Енергію магнітного поля котушки індуктивності можна знайти, виходячи з таких міркувань. Нехай після розмикання кола струм зменшується з часом за лінійним законом. У цьому разі ЕРС самоіндукції має таке постійне значення.

де t — час, за який сила струму в колі лінійно зменшується від початкового значення I до 0.

За цей час у колі проходить електричний заряд

При цьому робота електричного струму

Ця робота виконується за рахунок енергії магнітного поля котушки індуктивності.

Енергія Wм магнітного поля котушки індуктивності дорівню є половині

добутку її індуктивності на квадрат сили струму в ній:

Задачі та вправи

Розв’язуємо разом

1. Вертикальний залізний циліндрик, підвішений на динамометрі, намагнітили так, щоб його північний полюс був зверху. Циліндрик розмістили на однаковій відстані від екватора: перший раз у північній півкулі, другий — у південній. Коли покази динамометра були більші?

Перший раз, тому що напрям сили тяжіння збігається з напрямом складової притягання циліндрика магнітним полем Землі.

2. Який заряд пройде через поперечний переріз замкненого провідника опором 10 Ом при зміні магнітного потоку від 35 до 15 мВб?

При зміні магнітного потоку в провіднику виникає ЕРС індукції

Оскільки провідник замкнений, то у ньому буде текти струм силою

Разом з цим, сила струму дорівнює зміні заряду за одиницю часу:

Підставивши значення відомих фізичних величин, отримаємо: ∆q = 2 мКл.

3. Котушку дуже малого опору та індуктивністю 3 Гн під’єднано до джерела струму, ЕРС якого 15 В і дуже малий внутрішній опір. Через який інтервал часу сила струму в котушці досягне значення 50 А?

За законом Ома для повного кола повна ЕРС у колі, що дорівнює для цього випадку сумі — ЕРС джерела і — ЕРС самоіндукції, яка виникає після під’єднання котушки до джерела:

ЕРС самоіндукції визначається за формулою

Враховуючи попередні співвідношення, отримаємо

За умовою задачі опори R і г дуже малі, тому

Звідки можна визначити швидкість зміни струму

а потім — час, потрібний для збільшення сили струму до значення 50 А:

Зробивши розрахунки, отримаємо t = 10 с.